MODERATE INTENSITY TRAINING HAS MORE DESIRABLE EFFECTS ON LIVER METABOLISM THAN HIGH-INTENSITY INTERVAL TRAINING IN HEALTHY, SEDENTARY, MIDDLE AGED MEN

Author Block K.K. Motiani, A. Savolainen1, J.J. Eskelinen1, K.A. Virtanen1, 2Jukka Kapanen, R. Parkkola, V. Saunavaara1, E. Löyttyniemi, J. Knutti, P. Nuutiala, K.K. Kalliokoski1, J.C. Hannukainen1; 1Turku PET Centre, University of Turku, Turku, Finland, 2Paavo Nurmi Centre, Turku, Finland, 3Department of Radiology, University of Tampere, 3Department of Biostatistics, University of Turku, Turku, Finland.

Abstract:

Objective:

Liver has an important role in lipid and glucose metabolism. Physical activity improves hyperglycemia and reduces hepatic fat content in obese and type 2 diabetic patients. However, the effects of different modes of exercise training on liver substrate metabolism or function are still unclear and we therefore aimed to study these.

Materials and methods:

Twenty six healthy sedentary men (aged: 48[SD 5] years; BMI: 26.1[SD 2.4] kg·m⁻²; VO₂max: 34.2 [SD 4.1] ml·kg⁻¹·min⁻¹) were randomized into high intensity interval training (HIT) and moderate intensity training (MIT) group. The groups were studied before and after two weeks and six sessions of HIT (4-6 x 30 s all-out sprints on cycle ergometer with 4 minutes of recovery between sprints) or MIT training (40-60 min cycling with ergometer at 60 % of VO₂max). Liver insulin-stimulated glucose uptake (GU), fasting free fatty acid uptake (FAU), and perfusion were measured using ¹⁸F-FDG, ¹⁸F-FTHA,¹⁵O-H₂O PET-CT respectively. Abdominal fat masses, liver volume and fat content were measured using MRI and MRS.

Results:

Following intervention, VO₂max and whole body insulin sensitivity improved and visceral fat decreased similarly in both groups (all p < 0.05). Training effect was significantly different between the groups for liver GU [HIT -1.4 % (SE 5.1), MIT 17.2 %, (SE 7.5) p = 0.03], and FAU [HIT 3.1 % (SE 14), MIT -26.9 % (SE 8.8), p =0.03] while no change was observed in liver fat content. Liver perfusion and endogenous glucose production results are under analysis and will be presented in the symposium.

Conclusion:

This study shows that changes in liver metabolism are more sensitive to moderate intensity compared to very strenuous high intensity training.